Exam. Code : 103201
 Subject Code : 1028

B.A./B.Sc. It ${ }^{\text {st }}$ Semester
 MATHEMATICS

Paper-I (Algebra)

Time Allowed-3 Hours]
[Maximum Marks-50
Note :-Attempt FIVE questions in all, selecting at least TWO from each Section. All questions carry equal marks.

SECTION-A

1. (a) Reduce the matrix $\left[\begin{array}{lll}3 & -2 & 1 \\ 2 & -1 & 3 \\ 1 & -2 & 1\end{array}\right]$ to the form I_{3} and find rank.
(b) Find the inverse of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$ by elementary row operations.
2. (a) Determine whether the following matrices have same column space or not

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 4 & 3 \\
1 & 1 & 9
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 2 & 3 \\
-2 & -3 & -4 \\
7 & 12 & 15
\end{array}\right] .
$$

39(2117)/BSS-22596
1
(Contd.)
(b) Discuss for all values of K , the system of equations $(3 K-8) x+3 y+3 z=0,3 x+(3 K-8) y+3 z=0$, $3 x+3 y+(3 K-8) z=0$.
3. (a) Examine the consistency of
$2 x+3 y+z=9, x+2 y+3 z=6,3 x+y+2 z=8$ If consistent, solve for x, y, z by finding the inverse of the coefficient matrix.
(b) Prove that the characteristic roots of a skew-hermitian matrix A are either purely imaginary or zero.
4. (a) Find the characteristic roots and the associated characteristic vectors for the matrix $\left[\begin{array}{rrr}-3 & -9 & -12 \\ 1 & 3 & 4 \\ 0 & 0 & 1\end{array}\right]$.
(b) Verify Cayley-Hamilton theorem and find the inverse of $\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{array}\right]$.
5. (a) Find the characteristic equation and the minimal equation of the matrix $\mathrm{A}=\left[\begin{array}{rrr}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
Also show that A is non-derogatory.
39(2117)/BSS-22596
2
(Contd.)
(b) Write down the quadratic form corresponding to
the matrix $\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6\end{array}\right]$.

SECTION-B

6. (a) Show that every positive definite or semi-definite matrix can be represented as gram matrix.
(b) Show that the form $x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+2 x_{2} x_{3}-2 x_{3} x_{1}+2 x_{1} x_{2}$ is indefinite and find two set of values of x_{1}, x_{2}, x_{3} for which the form assumes positive and negative values.
7. (a) Solve the equation $32 x^{3}-48 x^{2}+22 x-3=0$, the roots being in A.P.
(b) Solve $3 x^{4}+17 x^{3}-5 x^{2}+8 x+12=0$, given that the product of two roots is unity.
8. (a) Can the same transformation remove both the second and the fourth terms of $x^{4}-12 x^{3}+48 x^{2}-72 x+35=0$? If so, solve it completely.
(b) If α, β, γ are the roots of the cubic $x^{3}-3 x+1=0$, form an equation whose roots are $(\beta-\gamma)^{2},(\gamma-\alpha)^{2}$, $(\alpha-\beta)^{2}$.

39(2117)/BSS-22596

a2zpapers.com

9. (a) If α, β, γ the roots of the equation

$$
x^{4}+2 x^{3}+3 x^{2}-x-2=0 \text { find the value of } \sum \frac{\alpha \beta}{\gamma^{2}}
$$

(b) Use Cardan's method to solve $\mathrm{x}^{3}-3 \mathrm{x}^{2}-10 \mathrm{x}+24=0$.
10. (a) Solve by Descartes' method

$$
x^{4}+2 x^{3}-7 x^{2}-8 x+12=0
$$

(b) Use Ferrari's method to solve

$$
x^{4}-5 x^{3}+3 x^{2}+2 x+8=0
$$

